A SIMPLE AND EFFICIENT SYNTHESIS OF KEY SYNTHETIC INTERMEDIATES OF 4-DEMETHOXYANTHRACYCLINONES, $(\pm)-AND$ (R)-(-)-7-DEOXY-4-DEMETHOXYDAUNOMYCINONE Michiyo SUZUKI, Teruyo MATSUMOTO, Rumiko ABE, Yoshikazu KIMURA, and Shiro TERASHIMA* Sagami Chemical Research Center, Nishi-Ohnuma, Sagamihara, Kanagawa 229 (±)-2,5,12-Trihydroxy-1,2,3,4-tetrahydronaphthacene-6,11-di-one-2-carboxylic acid was found to readily afford the racemic title compound by successive treatments with N,N'-carbonyldimidazole and methylmagnesium bromide in the presence of trimethylsilyl triflate. The same reaction scheme could also furnish the optically pure title compound from the (R)-carboxylic acid produced by the optical resolution. The 4-demethoxyanthracyclines, 4-demethoxyadriamycin($\mbox{\sc l}_a$) and 4-demethoxydaunorubicin($\mbox{\sc l}_b$), attract much attention since these modified antibiotics are expected to show more improved therapeutic indices than natural anthracyclines ($\mbox{\sc l}_c$,d). ($\mbox{\sc l}_a$) and ($\mbox{\sc R}$) -(-)-7-Deoxy-4-demethoxydaunomycinone(($\mbox{\sc l}_a$) and ($\mbox{\sc R}$) -(-)-3) hold pivotal positions in the synthesis of 4-demethoxyanthracyclinones($\mbox{\sc l}_a$,b), the aglycones of $\mbox{\sc l}_a$,b. Numerous methods have been hitherto explored for preparing these racemic and optically active key intermediates. $\mbox{\sc l}_a$) In connection with our continuing synthetic studies on optically active 2a,b, we have recently developed the efficient preparation method of 5,12-dihydroxy-1,2, 3,4-tetrahydronaphthacene-2,6,11-trione(4). The method for introducing the C_7 -hydroxy group into (R)-(-)-3 in a highly stereoselective manner has also been explored. Considering the simplicity and directness of the reaction scheme, the synthesis of (\pm) - and (R)-(-)-3 from (\pm) - and (R)-2,5,12-trihydroxy-1,2,3,4-tetrahydronaphtacene-6,11-dione-2-carboxylic acid((\pm) - and (R)-6) readily accessible from 4, has been anticipated to be one of the most promising large scale preparation methods of these key intermediates. However, this has never met a success probably due to the lack of the efficient reaction which can directly transform the carboxyl groups of (\pm) - and (R) -6 into the corresponding methyl ketones. We wish to report here that (\pm) -6 can afford a good yield of (\pm) -3 in one pot reaction by sequential treatments with N,N'-carbonyldiimidazole and methylmagnesium bromide in the presence of trimethylsilyl triflate(TMSOTf). Moreover, since (\pm) -6 can be effectively resolved into (R)-6 by the use of (-)-N-methylephedrine, the explored overall process is found to be applicable to the preparation of optically pure (R)-(-)-3 from 4. Preparation of (\pm) -6 from 4 was performed according to a conventional method. Thus, cyanohydrin formation of 4 (KCN(15 equiv.)-AcOH(20 equiv.) in EtOH-THF(1:1), rt, overnight, then 1 mol dm⁻³ HCl) gave the unstable product((\pm) -5) in 83% yield. This was directly hydrolyzed (concd HCl-AcOH(1:2), reflux, 10 h) to give (\pm) -6 in 94% yield, mp 251-252 °C(from nitrobenzene)(lit., 8) mp 253-258 °C). With a large quantity of (\pm) -6 in hand, various methods were examined which had been reported to give a methyl ketone from the corresponding carboxylic acid. After several unsuccessful attempts, it was finally found that the reaction of N-acylimidazole((\pm) -7) with methylmagnesium bromide could afford the promising result. Thus, the reaction of (\pm) -6 with N,N'-carbonyldiimidazole(2.0 equiv.) in THF containing hexamethylphosphoric triamide(HMPA)(8.0 equiv.)(rt, 18 h) furnished (\pm) -7. Without isolation, (\pm) -7 was immediately treated with TMSOTf(1.0 equiv.)(-20 °C), then with methylmagnesium bromide(14.0 equiv.)(3 mol dm⁻³ in Et₂O, -40 °C, 3h), to give (\pm) -3 in 65% yield after quenching (1 mol dm⁻³ HCl), extractive isolation (EtOAc), and filtration with a short column (SiO₂: EtOAc/C₆H₆=1/9), mp 213-215 °C(from C₆H₆)(lit., 3b) mp 214-216 °C). In the absence of TMSOTf, the addition of the Grignard reagent to (\pm) -7 begins to occur only at -20 °C, affording a lower yield(at most 40% yield) of (\pm) -3. Therefore, (\pm) -7 seems to be activated with TMSOTf by silylation of the N³-position of the imidazole ring. In order to apply the explored one pot process to the preparation of (R)-(-)-3, the optical resolution of ($\frac{+}{2}$)- $\frac{6}{6}$ was next examined. (-)-N-Methylephedrine was found to be the best optically active amine being necessary for the salt formation with ($\frac{+}{2}$)- $\frac{6}{6}$. A mixture of ($\frac{+}{2}$)- $\frac{6}{6}$ and (-)-N-methylephedrine 13) (mp 85-86 °C, [α] $_{D}^{20}$ -30.2°(c 4.48, MeOH))(1.2 equiv.) in ethanol was heated at reflux for 2 h. The hot mixture was filtered to remove a small amount of insoluble materials, concentrated to half volume, then kept standing (rt, overnight), to precipitate the crude salt of (R)-6 in 51%(102%)¹⁴⁾ yield, mp 200-204 °C, $[\alpha]_D^{20}$ -63.6°(c 0.10, CHCl₃). The crude salt was recrystallized twice from ethanol containing 0.2 equiv. of (-)-N-methylephedrin, to give the pure salt of (R)-6 in 31%(62%)¹⁴⁾ yield, mp 217.5-220 °C, $[\alpha]_D^{20}$ -12.0°(c 0.05, CHCl₃). Regeneration of optically pure (-)-6 was simply achieved stirring a suspension of the pure salt in an aqueous acid (1 mol dm⁻³ HCl, 17 h), to give optically pure (R)-6 in a quantitative yield, mp >280 °C. Unfortunately, the optical rotation could not be measured because of the extremely low solubility of (R)-6 to almost all solvents. While the absolute configuration and optical purity of optically active 6 could be determined by the successful synthesis of (R)-(-)-3 (vide supra), the independent determination of these physical indices was examines at this stage by transforming optically active & into its derivatives. Esterification (MeOH-DMSO (5:1)-concd $\mathrm{H}_2\mathrm{SO}_4$, reflux, 4 h) of optically active 6 gave the (-)-methyl ester ((-)-8) in 81% yield, mp 206.5-210 °C, $[\alpha]_D^{20}$ -55.0°(c 0.10, CHCl₃), after purification by column chromatography (SiO $_2$: C $_6$ H $_6$ /EtOAc=5 $_{\circ}$ 3). Recrystallization of this sample from toluene gave optically pure (-)-8, mp 210.5-211.5 °C, $[\alpha]_D^{20}$ -60.0° (c 0.10, CHCl₃). Methylation $(Me_2SO_4(3.9 \text{ equiv.})-K_2CO_3(3.9 \text{ equiv.}) \text{ in } Me_2CO$, reflux, 5.5 h) of (-)-8 ([α]_D²⁰ -55.0°(c 0.10, CHCl₃)) followed by purification by column chromatography (SiO_2 : Et₂O) produced the (+)-dimethoxy ester ((+)-9) in 90% yield, mp 152-154 °C(lit., $\frac{3}{3}$ a) mp 154-155 °C), [α] $\frac{20}{D}$ +11.7°(c 0.22, CHCl₃). 15) Measurement of the NMR spectrum of (+)-9 in the presence of the chiral shift reagent(Eu(hfc) $_3$) clearly disclosed that (+)-9 was optically pure. Accordingly, the optical purity of optically active & obtained by the resolution was established to be 100% ee. In order to determine the absolute configuration, (+)-9 was further hydrolyzed (KOH(1.5 equiv.) in MeOH-THF-H₂O, rt, 3 h) to give the (+)-dimethoxy acid ((+)-10) in 82% yield, mp 202-207 °C(from hexane-EtOAc), [α]_D²⁰ +16.9°(c 0.20, CHCl₃)(lit., ^{3a)} mp 200-201 °C, [α]_D²⁰ +13.6°(c 0.43, CHCl₃); lit., ⁸⁾ mp 200-205 °C, [α]_D²⁰ +14.0°(c 0.20, CHCl₃)). Since (+)-100 had been reported to belong to (R)-series, optically active 60 was definitely established to have (R)-configuration. Finally, the synthesis of (R)-(-)-3 from optically pure (R)-6 was carried out following the reaction scheme explored by the use of (\pm)-6. The same treatments of (R)-6 as those described for (\pm)-6 readily gave (R)-(-)-3 in 58% yield, mp 195-203 °C, [α] $_D^{20}$ -85.7°(c 0.11, CHCl $_3$), after filtration through a short silica gel column. Recrystallization from benzene gave optically pure (R)-(-)-3, mp 214-216 °C, [α] $_D^{20}$ -90.6°(c 0.11, CHCl $_3$)(lit., $_4$) mp 218-219 °C, [α] $_D^{20}$ -90.3°(c 0.11, CHCl $_3$)). As mentioned above, we have succeeded in developing the efficient synthetic scheme which could convert 4 into (\pm) - and (R) - (-) - 3 by way of (\pm) - and (R) - 6. Numerous synthetic approaches to anthracyclinones hitherto reported, terminate at or proceed through 1,2,3,4-tetrahydronaphthacene-2,6,11-trione derivatives. ²⁾ Taking into account the operational simplicity and directness, the exprored process is considered to be one of the best synthetic routes which can add the racemic or optically active C_0 - α -hydroxy ketone moiety to those tetracyclic systems. ## References - 1) F. Arcamone, "Doxorubicin," Academic Press, New York(1981), pp. 259-299; M.B. Naff, J. Plowman, and V.L. Narayanan, "Anthracycline Antibiotics," ed by H.S. El Khadem, Academic Press, New York(1982), pp. 1-57. - 2) S. Terashima, Yuki Gosei Kagaku Kyokai Shi, 40, 20(1982). - 3) a) S-s. Jew, S. Terashima, and K. Koga, Chem. Pharm. Bull., 27, 2351(1979); b) N. Tanno and S. Terashima, ibid., 21, 811, 821(1983); c) S. Terashima and K. Tamoto, Tetrahedron Lett., 23, 3715(1982); Chem. Pharm. Bull. in press and references cited therein. - 4) a) S. Terashima, K. Tamoto, and M. Sugimori, Tetrahedron Lett., 23, 4107(1982); Tetrahedron in press and references cited therein; b) K. Tamoto and S. Terashima, Proceeding of the 43th Symposium on the Synthetic Organic Chemistry, Tokyo, June 1983, Abstr., No. 2-8. - 5) Y. Kimura, M. Suzuki, T. Matsumoto, R. Abe, and S. Terashima, Chem. Lett., 1984, 473. - 6) Acetallization of (R)-(-)-3 with ethylene glycol (p-TsOH-C₆H₆, reflux, 5 h, 98%) followed by bromination (Br₂-CHCl₃-CCl₄-H₂O, hv) and treatment with 10% NaOH stereoselectively afforded crude (+)-3b in 48% yield (2 steps) (the ratio of (+)-3b to its C₇-epimer >20:1). Direct recrystallization of this sample readily gave optically pure (+)-3b, mp 184-185 °C, [α]_D +156°(dioxane), in 34% yield (2 steps). - 7) For the reported preparation method of $(\pm)-3$ from 4; see, M. Suzuki, Y. Kimura, and S. Terashima, Chem. Lett., 1984, 1543. - 8) Japan Kokai Tokkyo Toho, JP 58-77844. - 9) H.A. Staab, Angew. Chem., Int. Ed. Engl., 1, 351(1962). - 10) Generation of (\pm) -7 was reasonably assumed according to the literature. Isolation of (\pm) -7 was not examined due to the high reactivity of (\pm) -7 to water. - 11) The use of HMPA seems to be inevitable for obtaining a higher yield of (\pm) -7. - 12) This operation was required to remove a small amount of the tertiary alcohol, mp 234.5-237.5 °C, which was usually produced in less than 3% yield. - 13) T. Mashiko, S. Terashima, and S. Yamada, Yakugaku Zasshi, 100, 319 (1980). - 14) Based on the amount of (R)-6 originally involved in (\pm)-6. - 15) This sample showed the following optical rotations; $[\alpha]_D^{20}$ 0.0°(c 0.22, Me₂CO), $[\alpha]_D^{20}$ -5.2°(c 0.23, MeOH), $[\alpha]_D^{20}$ -13.1°(c 0.25, EtOH), and $[\alpha]_D^{20}$ -23.5°(c 0.22, C₆H₆). Although $[\alpha]_D^{20}$ -7.8°(c 0.613, Me₂CO) was reported for this compound in the previous report, ^{3a)} this rotation value should be corrected. (Received October 11, 1984)